Tyrosine-derived polycarbonate-silica xerogel nanocomposites for controlled drug delivery.
نویسندگان
چکیده
Biodegradable polymer-ceramic composites offer significant potential advantages in biomedical applications where the properties of either polymers or ceramics alone are insufficient to meet performance requirements. Here we demonstrate the highly tunable mechanical and controlled drug delivery properties accessible with novel biodegradable nanocomposites prepared by non-covalent binding of silica xerogels and co-polymers of tyrosine-poly(ethylene glycol)-derived poly(ether carbonate). The Young's moduli of the nanocomposites exceed by factors of 5-20 times those of the co-polymers or of composites made with micron scale silica particles. Increasing the fraction of xerogel in the nanocomposites increases the glass transition temperature and the mechanical strength, but decreases the equilibrium water content, which are all indicative of strong non-covalent interfacial interactions between the co-polymers and the silica nanoparticles. Sustained, tunable controlled release of both hydrophilic and hydrophobic therapeutic agents from the nanocomposites is demonstrated with two clinically significant drugs, rifampicin and bupivacaine. Bupivacaine exhibits an initial small burst release followed by slow release over the 7 day test period. Rifampicin release fits the diffusion-controlled Higuchi model and the amount released exceeds the dosage required for treatment of clinically challenging infections. These nanocomposites are thus attractive biomaterials for applications such as wound dressings, tissue engineering substrates and stents.
منابع مشابه
Polymer-xerogel composites for controlled release wound dressings.
Many polymers and composites have been used to prepare active wound dressings. These materials have typically exhibited potentially toxic burst release of the drugs within the first few hours followed by a much slower, potentially ineffective drug release rate thereafter. Many of these materials also degraded to produce inflammatory and cytotoxic products. To overcome these limitations, composi...
متن کاملGuar gum-grafted poly(acrylonitrile)-templated silica xerogel: nanoengineered material for lead ion removal
Background: Polysaccharides are renewable biodegradable natural materials and are accounted for to control the formation of hybrid silica nanocomposites by sol gel process. Methods: The synthesis of templated silica xerogel essentially includes two critical steps of hydrolysis and polycondensation reaction that are started by catalyst and silica precursor solution. Aside from this Saponificatio...
متن کاملSol–gel-processed silica/polydimethylsiloxane/calcium xerogels as polymeric matrices for Metronidazole delivery system
Silica, silica/polydimethylsiloxane and silica/polydimethylsiloxane/ calcium xerogels were examined as polymeric carriers for the controlled release of drug—Metronidazole. Characterization assays comprised analysis of the matrix by Fourier transform infrared spectroscopy (FTIR), determining the specific surface area of solids (BET) and scanning electron microscope (SEM) techniques and further m...
متن کاملFacile large-scale synthesis of brain-like mesoporous silica nanocomposites via a selective etching process.
The core-shell structured mesoporous silica nanomaterials (MSNs) are experiencing rapid development in many applications such as heterogeneous catalysis, bio-imaging and drug delivery wherein a large pore volume is desirable. We develop a one-pot method for large-scale synthesis of brain-like mesoporous silica nanocomposites based on the reasonable change of the intrinsic nature of the -Si-O-Si...
متن کاملApplication of mesoporous silica nanoparticles for drug delivery to cancer cells
Cancer is one of the main causes of death worldwide. Chemotherapy is the most common method for cancer therapy which represent non-specific side effects on normal cells and tissues and drug resistance in cancer cells. There are two main mechanisms for Multi Drug Resistance (MDR) in cancer cells including: drug efflux pump and activation of anti-apoptotic pathways. Cancer chemotherapy disadvanta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2013